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1 Introduction

Parts of these explanations follow the calculations as presented by Boris
Burkov, June 17, 2021.

1. Motivation

This article adresses to biologists and physicians which are using the Chi-
square test in many situations comparing results between groups of pa-
tients and biological entities.

Many questions where observed frequencies are compared with expected
frequencies, can be assessed and verified by means of Chi-square tests.
This article takes a closer look to the mathematical background apply-
ing the Chi-square test statistic. In particular three points are considered
which are important for the insight how to apply the Chi-square test statis-
tics:

1. The test statistic X2 = ∑(O − E)2/E, introduced by Pearson has a Chi-
square distribution.

2. With the observation of k categories a significance test with (k-1) de-
grees of freedom will be performed.

3. Because the Hardy-Weinberg equilibrium is introduced quite early in
the field of natural sciences, the Chi-square test is treated in particular.

Example

Example for goodness-of-fit test statistic: Do the observed relations of
mobbing victims between men and women in a city match with the re-
lation of 3 :1 from a bigger population?

Example 1:
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sex women men
observed 203 45
expected 188 62
(O − E)2/E 1.554 4.661

X2 = ∑(O − E)2/E = 1.554 + 4.661 = 6.215

general formulation

Deviations are assessed by the Chi-square statistic:

X2 = ∑
i

(O − Ei)
2

Ei
(1)

O ... observed values
E ... expected values

2. Principal mathematical assumptions

A binomial random variable M follows M ∼ B(n,p).

n is the number of trials (occurrences).
x is the number of successful trials.
p (x/n) is the probability of success in a single trial.
Parameters are: µ = np, σ =

√
npq.

Sentence 1:

M is a continuous random variable with normal distribution N(µ, σ). By
transformation M−µ

σ we achieve standardisation to N(0, 1) .

Sentence 2:

The sentence of Moivre-Laplace states that a binomially distributed ran-
dom variable K ∼ Bin(p,n) with n→ ∞ converges to a standard normally
distribution.

In particular the following holds:

lim
k→∞

P
(

K − np√
np(1 − p)

≤ k

)
= Φ(k) (2)

whereby Φ(k) is the distribution function of the standard normally distri-
bution.

Therefore, there is:

M − µ

σ
=

K − np√
np(1 − p)

= N(0, 1). (3)
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Sentence 3:

if Z1, . . . , Zn are stochastic independent and random variables with stan-
dard normally distribution, then its sum of squares Q are Chi-square dis-
tributed with n degrees of freedom;

Q = Z2
1 + · · ·+ Z2

n ∼ X2(n). (4)

2 Goodness-of-fit application

1. Chi-square for random variables with two categories

Calculation of the coin tossing

A coin is tossed 100 times and the number of heads and tails is listed.
There should be clarified whether the coin is fair whereby heads and tails
are equally distributed to be 50% each.

Example 2:

result toss head tail p (head)
observed 60 40 0.6
expected 50 50 0.5
(O − E)2/E 2 2

X2 = ∑i(O − E)2/E2 = 2 + 2 = 4

Random variable”result coin toss” is binomially distributed, therefore:

p(head) = 0.5, p(tail) = 0.5

Expected(head) E= np = 100 x 0.5 = 50.

Standard deviation=
√

npq.

Term X2 = ∑i(O − E)2/E can now be reformulated, because

O2 = n − O1 und q = 1 - p:

X2 =
2

∑
j=1

(Oj − E)2/E2

=
(O1 − np)2

np
+

((n − O1)− n(1 − p))2

n(1 − p)

=
(O1 − np)2

np
+

(O1 − np)2

n(1 − p)

=
(O1 − np)2(1 − p) + (O1 − np)2p

np(1 − p)
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=
(O1 − np)2(1

�
�−p +��p)

np(1 − p)

=
(O1 − np)2

np(1 − p)
∼ X2

1. (5)

As
K − np
√

npq
∼ N(0, 1)

⇒ (according 2)
(O1 − np)2

np(1 − p)
∼ X2

1. (6)

By this way it can nicely be demonstrated that testing with 2 categories leads to a
Chi-square test with one degree of freedom, i.e. if one class is known the second
class in this context is fixed and there is no further degree of freedom.

Testing a random variable with k = 2 categories ⇒ ∼ X2
1 (Chi-square with 1 DF)

2. Chi-square for random variables with three categories

It shall be demonstrated that by testing a random variable with 3 cate-
gories leads to a Chi-square test with 2 degrees of freedom.

First Pearson’s formula with 3 squared terms will first be expanded by an-
other term and afterwards reduced by this term.

Procedure

X2 = (O1 − E1)
2/E1 is expanded by (O2+O3−n(p2+p3))

2

n(p2+p3)
, which are the col-

lapsed classes 2 and 3.

X2 =
3

∑
i=1

(Oi − Ei)
2/E2

i

=
(O1 − np1)

2

np1
+

(O2 + O3 − n(p2 + p3))
2

n(p2 + p3)
(7)

− (O2 + O3 − n(p2 + p3))
2

n(p2 + p3)
+

(O2 − np2)
2

np2
+

(O3 − np3)
2

np3
(8)

As next it will be demonstrated that each (7) and (8) result in a Chi-square
with 1 DF each.

Elaboration of (7):

With O2 + O3 = n − O1 and p2 + p3 = 1 − p1:

(O1 − np1)
2

np1
+

(O2 + O3 − n(p2 + p3))
2

n(p2 + p3)
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=
(O1 − np1)

2

np1
+

(n − O1 − n(1 − p1))
2

n(1 − p1)

=
(O1 − np1)

2

np1
+

(�n − O1 −�n + p1)
2

n(1 − p1)

=
(O1 − np1)

2(1 − p1) + (O1 − np1)
2p1

np1(1 − p1)

=
(O1 − np1)

2(1 − p1 + p1

np1(1 − p1)

=
(O1 − np1)

2

np1(1 − p1)∗
(9)

According to (6), for term (9) → ∼ X2
1.

(1 − p1)
∗ is probability of collapsed categories 2 + 3.

Elaboration of (8)

Formula part (8) is ∼ X2
1 as well. This will be shown in the following:

− (O2 + O3 − n(p2 + p3))
2

n(p2 + p3)
+

(O2 − np2)
2

np2
+

(O3 − np3)
2

np3

= − (O2 + O3 − n(p2 + p3))
2 · p2 p3

n(p2 + p3) · p2 p3
+

(O2 − np2)
2 · (p2 + p3)p3

np2 · (p2 + p3)p3
+

(O3 − np3)
2 · (p2 + p3)p2

np3 · (p2 + p3)p2

=
[
(O2

2 − 2O2np2 + n2 p2
2)(p2 p3 + p2

3) + (O2
3 − 2O3np3 + n2 p2

3)(p2
2 + p2 p3)

−((O2 + O3)
2 − 2(O2 + O3)n(p2 + p3) + n2(p2

2 + 2p2 p3 + p2
3))p2 p3

]
/[np2 p3(p2 + p3)].

(10)

Calculate:
=
[
(O2

2 p2 p3 + O2
2 p2

3 − 2O2np2
2 p3 − 2O2np2 p2

3 + n2 p3
2 p3 + n2 p2

2 p2
3)

+(O2
3 p2

2 + O2
3 p2 p3 − 2O3np3 p2

2 − 2O3np2 p2
3 + n2 p2

2 p2
3 + n2 p2 p3

3)

−(O2
2 p2 p3 + 2O2O3 p2 p3 + O2

3 p2 p3 − 2O2np2
2 p3 − 2O2np2 p2

3 − 2O3np2
2 p3

−2O3np2 p2
3 + n2 p3

2 p3 + 2n2 p2
2 p2

3 + n2 p2 p3
3)
]

/[np2 p3(p2 + p3)].

(11)

With exception of the 3 terms O2
2 p2

3, O2
3 p2

2, −2O2O3p2p3 all other terms
cancel away.

⇒ (9) =
O2

2 p2
3 + O2

3 p2
2 − 2O2O3p2p3

np2p3(p2 + p3)
=

(O2p3 − O3p2)
2

np2p3(p2 + p3)
(12)

Follwing (2) und (3) term (12) is Chi-square distributed, if the square root
of it is standard normally distributed.

also ξ =
O2p3 − O3p2√
np2p3(p2 + p3)

∼ N(0,1). (13)
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****

Begin of proof for (13)

Proof (13)

It must be demonstrated, that variables O2 and O3 are independent, there-
fore
1. Var[ξ] = 1 und Cov(O2,O3) = 0, sowie
2. E[ξ] = 0.

O2 and O3 following (2) are standard normally distributed random vari-
ables.

Expectations are E[O2] = np2 and E[O3] = np3

Variances areVar[O2] = np2(1 − p2] and Var[O2] = np2(1 − p2]

****

Sentence 4

The sum of two normally distributed random variables are normally dis-
tributed with paramters:

N[(µX + µY); (σ2
X + σ2

Y + 2Cov(X,Y))]
µX+Y = µX + µY; σ2

X+Y = σ2
X + σ2

Y + 2Cov(X,Y)

****

Calculation E[ξ] = 0

E[ξ] =
O2p3√

np2p3(p2 + p3)
− O3p2√

np2p3(p2 + p3)

=
np2p3√

np2p3(p2 + p3)
− np3p2√

np2p3(p2 + p3)

=
np2p3 − np3p2√
np2p3(p2 + p3)

= 0. (14)

Calculation Var(ξ)

Under assumption, that O2 and O3 are not independent, term
2Cov(O2,O3) must be included.

Var(ξ) = Var

[
O2p3 − O3p2√
np2p3(p2 + p3)

]

=
1

n2p2
2p2

3(p2 + p3)2
Var[p3O2 − p2O3]
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as Var(c · X) = c2Var(X)→

=
1

n2p2
2p2

3(p2 + p3)2

(
Var[O2] · p2

3 + Var[O3] · p2
3 − 2Cov[O2,O3]

)
=

np2(1 − p2)p2
3 + np3(1 − p3)p2

2 − 2p2p3 · Cov[O2,O3]

n2p2
2p2

3(p2 + p3)2

=
np2p3(p2 + p3)− 2np2

2p2
3 − 2p2p3 · Cov[O2,O3]

n2p2
2p2

3(p2 + p3)2
(15)

How can now Cov[O2,O3] be calculated?

Let’s consider result (R) by conducting an experiment. There are the fol-
lowing possibilities:

ZV O2 =

{
0, R ̸= 2
1, R = 2 ZV O3 =

{
0, R ̸= 3
1, R = 3 (16)

Cov[O2,O3] = E[[[(O2 − E[O2]) · (O3 − E[O3])]]]

= E[[[O2O3 − O2E[O3]− O3E[O2] + E[O2]E[O3]]]]

= E[O2O3]−�������
E[O2]E[O3]− E[O3]E[O2] +�������

E[O2]E[O3]

= E[O2O3]− E[O3]E[O2] (17)

As shown in (16) E[O2O3] = 0 (O2 und O3 cannot occur simultaneously),
and E[O2]E[O3] = n · p2 + n · p3, it follows:

Cov[O2,O3] = 0 − E[O2]E[O3]

= −n · p2 + n · p3 (18)

Therefore resulting for Var(ξ):

Var(ξ) =
np2p3(p2 + p3)− 2np2

2p2
3 − 2p2p3 · (−np2p3)

np2p3(p2 + p3)

=
np2p3(p2 + p3)−�����

(2np2
2p2

3) +�����
(2np2

2p2
3)

np2p3(p2 + p3)

=
np2p3(p2 + p3)

np2p3(p2 + p3)

= 1. (19)

with (14) and (19) it could be shown, that assumption (13)

ξ = O2 p3−O3 p2√
np2 p3(p2+p3)

∼ N(0,1) is correct.

End of proof for (13)
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****

It could be demonstrated that by testing a random variable with 3 categories leads
to a Chi-square test with 2 degrees of freedom, whereas (7) and (8) contribute each
with 1 DF.
Testing a random variable with k = 3 categories ⇒ ∼ X2

2 (Chi-square with 2 DF)

General rule:

By much more sophisticated mathematics it could be demonstrated that by test-
ing a random variable with k categories leads to a Chi-square test with k-1 de-
grees of freedom.
Testing a random variable with k categories ⇒ ∼ X2

k−1 (Chi-square with k-1 DF)

3 Hardy - Weinberg equilibrium - one degree of
freedom

The Hardy–Weinberg principle relates allele frequencies to genotype fre-
quencies in a randomly mating population. Imagine that you have a pop-
ulation with two alleles (A and B) that segregate at a single locus. The
frequency of allele A is denoted by p and the frequency of allele a is de-
noted by q. The Hardy–Weinberg principle states that after one generation
of random mating genotype frequencies will be p2, 2pq, and q2 and the fol-
lowing equation is fulfilled:

p2 + 2pq + q2 = 1. (20)

When in an experiment the allele are counted for the three phenotypes
p2, 2pq, and q2, the deviation from an equilibrium can be tested by a Chi-
square test. In the following it is demonstrated that the deviations are
tested by a Chi-square test with one degree of freedom and not with two
degrees as probably it could be suspected because we have three pheno-
types: nAA = observed number of phenotype AA. nAa = observed number
of phenotype Aa. naa = observed number of phenotype aa. eAA, eAa, eaa =
corresponding expected values.

the Chi-square statistics is computed as:

X2 =
(nAA − eAA)

2

eAA
+

(nAa − eAa)
2

eAa
+

(naa − eaa)2

eaa
(21)

this X2 is asymptically distributed ∼ X2
1.

Procedure
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Following R.V. Rohlfs and B.S. Weir, 2018. For genotypes AA, Aa, aa, the
sample counts for the genotypes nAA, nAa, naa summing to n. The count-
ing of the genotypes can be represented as a 2 x 2 contingency table.

As nAA + nAa/2 + nAa/2 + naa = n we rather you use the allele countings
2nAA + nAa + 2naa = 2n.

Allele A a Sum
A 2nAA nAa nA
a nAa 2naa na

nA na 2n

The general formula applying for the deviation between observed and ex-
pected in a 2 x 2 contingency table shows:

X2 =
N(ad − bc)2

(a + b)(a + c)(c + d)(b + d)
(22)

Proof that (22) is asymptotically Chi-square distributed with 1 DF is sep-
arately presented by Hans Stocker: The Chi-square test statistic of 2 x 2
tables, October 2023.

By inserting the corresponding allele frequencies from the above table we
get:

X2 = n

(
4nAAnaa − n2

Aa
(2nAA + nAa)(2naa + nAa)

)2

(23)

Observe that we need to multiply by n because we doubled the countings
above for convenience.
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